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Abstract

Model updating is a powerful technique to improve finite element models of structures using measured data. One of the

key requirements of updating is a set of candidate parameters that is able to correct the underlying error in the model.

Often regions such as joints are very difficult to parameterise satisfactorily using physical design variables such as

stiffnesses or dimensions. Parameters arising from generic element and substructure transformations are able to increase

the range of candidate parameters, and furthermore are able to correct structural errors. However, unconstrained generic

substructure transformations change the connectivity of the model matrices. In many instances retaining the connectivity is

desirable and this paper derives constraint equations to do so. The method assumes that substructure eigenvalues are the

parameters used in the global updating procedure and that the substructure eigenvector matrix is optimised to enforce the

connectivity constraints. The method is demonstrated on a simple L shape test structure, where the substructure is the

corner.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Finite element modelling is a well-established tool to analyse the vibration of structures. Discrepancies often
arise between the model and the structure. In many cases these may be corrected by updating design variable
parameters, and these techniques are well established [1,2]. In some instances the errors may be caused by the
break down in the assumptions underpinning the finite element formulation. A joint in a truss structure
modelled using beam elements is a good example. Around the joints the assumed strain distribution model is
incorrect leading to a structural error in the model. Ibrahim and Pettit [3] considered the local stiffening due to
preload. In order to reduce these structural errors the assumed shape function of the elements must be
changed, and this cannot be done by modifying design variable parameters. Additional parameters may be
incorporated into the finite element formulation to account for those behavioural affects neglected in the
baseline model. More advanced elements can be used, for example Euler–Bernoulli beam elements can be
replaced with Timoshenko beam elements to include a parameter that models shear strain. Abstract
parameters may be introduced that account for the unmodelled behaviour in an equivalent way. An example is
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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a rigid beam offset that assumes a portion of the beam near to a joint is rigid. Mottershead et al. [4] used rigid
offsets to update an aluminium space frame, and Horton et al. [5] demonstrated their benefits over design
variable parameters in the updating of welded joints. In the latter case the resultant offset was negative,
implying that the joint was much more flexible than the baseline model.

Stavrinidis et al. [6,7] assumed that the element stiffness matrix for a beam was accurate and derived an
optimum element mass matrix for a beam. The mass matrix was obtained by minimising the discretisation
error using a Taylor series expansion, while retaining the inertia properties of the rigid body modes. An
alternative view of this approach is that it allows a wider choice of shape functions. The method may also be
applied to plate elements [8]. This more general approach to parameterisation was extended by Ahmadian et
al. [9] and Gladwell and Ahmadian [10] with the introduction of the generic element concept. A generic
element is a member of a family of elements that encompasses all possible element formulations described by
the same displacement field. Once a member of the family is defined (the baseline element), it is possible to
obtain any other element in the family, by modifying the baseline eigenvalues and transforming the baseline
eigenvectors. For example an Euler–Bernoulli beam element may be transformed into a Timoshenko beam
element. Many additional behavioural affects can be incorporated into a model without explicit
parameterisation during the element formulation.

Ahmadian et al. [11] compared the generic element parameterisation with direct methods and the design
variable parameterisation using a frame structure. They highlighted the loss of physical meaning with direct
methods and the restrictions on the type of changes that can be made with design variable parameters. The
generic elements had 140 parameters spread between 28 elements and resulted in a massively under-determined
estimation problem. Thus multiple solutions exist that reproduce the test data, making it hard to justify the
changes made physically. A least-squares solution was obtained, although it was suggested that additional
constraints should be applied to reduce the size of the parameter set. Ratcliffe et al. [12] applied the generic
element approach to joint identification using FRF data. The number of generic parameters was limited by
enforcing element symmetry and preventing coupling of uncoupled modes. Proportional damping was
assumed and the updated model showed significant improvement in simulated and experimental examples.
Titurus et al. [13] used the first two eigenvalues of a T-joint substructure as parameters to update a welded
frame. A high level of correlation was achieved with regard to both natural frequencies and mode shapes.
Friswell et al. [14] used generic elements to improve the dynamic models of golf clubs. The club shaft was
modelled using a generic beam element and the parameters included an element eigenvalue. Wu and Law
[15,16] highlighted the difference between parameter and structural errors. A model was defined as containing
structural errors if significant physical effects had been neglected, and needed to be incorporated during
updating. It was highlighted that modifying physical parameters cannot correct these errors as the assumed
shape functions would not change. The generic parameters were updated using a flexibility sensitivity method,
rather than standard frequency or modeshape sensitivity. Updating showed good correction of the structural
errors that would not be possible with design variable parameters. Law et al. [17] modelled and updated a steel
space frame. Generic elements were connected by semi-rigid spring joint models and were updated
simultaneously, improving the frequency and modeshape correlation with the test data. Generic elements have
also been applied to the field of damage detection. Wang et al. [18] located damage in T and L-shaped joints
using FRF data.

A large number of potential parameters are available with generic elements or substructures. For example,
an in-plane beam element has 3, 4 or 6 parameters if the deformation is considered symmetric and uncoupled
(axial and bending deflection), non-symmetric and uncoupled, or non-symmetric and coupled, respectively. If
all of the generic element parameters are used then the updating equation will be under-determined, and
regularisation techniques will be required to obtain a unique solution. Often a minimum norm solution is used,
but this may not be the best option to produce a physically representative model. Titurus et al. [13] applied the
generic element approach to substructures to improve stiffness models around the joints, and subset selection
was used to reduce the number of parameters.

Substructuring allows the areas of uncertainty to be updated as a region and will incorporate interactions
between the elements from which it is composed. However unconstrained substructure transformations will
change the connectivity of the substructure because unconnected and uncoupled degree of freedom pairs are
active in the same substructure mode. The purpose of this paper is to develop a method to generate constraint
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equations to ensure the connectivity properties of the baseline substructure are retained. The main application
is when the substructure eigenvalues are used as updating parameters and the substructure eigenvector
transformation is used to satisfy the connectivity constraints. This significantly reduces the size of the
parameter set, while allowing controllable changes to the model matrices and retaining the connectivity of the
baseline model.

2. Theory of the generic element method

There are two approaches to the generic element or substructure method. In the following the method will
be applied to a substructure, but the method is equally applicable to a single finite element. The first approach
uses the solution to the generalised eigenvalue problem corresponding to the substructure mass and stiffness
matrices to make changes to both the mass and stiffness. The second approach only changes the stiffness using
the eigendata of the substructure stiffness matrix. The mass matrix may also be changed in isolation, although
usually the mass distribution is more accurately modelled. Gladwell and Ahmadian [10] gave a full derivation
of the generic element theory.

2.1. Combined mass and stiffness substructure decomposition

A baseline substructure is defined from which the transformations will take place. Baseline matrices are
identified by the subscript 0 and the matrices corresponding to the substructure are denoted by the superscript
s. The eigenvalue problem is given by

Ks
0U

s
0 ¼Ms

0U
s
0K

s
0, (1)

where Us
0 is the mass normalised eigenvector matrix, Ms

0 and Ks
0 are the mass and stiffness matrices of the

substructure and Ks
0 is the diagonal matrix of eigenvalues. Assuming the eigenvectors are mass normalised, Us

0

and Ks
0 satisfy

UsT
0 Ms

0U
s
0 ¼ I and UsT

0 Ks
0U

s
0 ¼ Ks

0. (2)

The transformed substructure matrices are identified by the subscript T. The eigenvectors of the baseline and
transformed substructure are related by the transformation matrix S, where

Us
0 ¼ Us

TS. (3)

The baseline and transformed substructures are assumed to have the same number of rigid body modes; d. The
format of S ensures that the baseline rigid body modes are linear combinations of the transformed rigid body
modes only; whereas the baseline strain modes are a linear combination of both transformed rigid body and
strain modes. Thus,

½Us
0R Us

0S� ¼ ½U
s
TR Us

TS�
Ss

R Ss
RS

0 Ss
S

" #
, (4)

where the subscripts R and S denote the rigid body and strain modes, respectively. The eigenvalue problem for
the transformed substructure is

Ks
TUs

T ¼Ms
TUs

TKs
T . (5)

Assuming the eigenvectors are mass normalised, the modified substructure eigenvalue matrix, KT , and the
transformed substructure eigenvector matrix, UT , satisfy

UsT
T Ms

TUs
T ¼ I and UsT

T Ks
TUs

T ¼ Ks
T . (6)

Eqs. (2)–(6) can be rearranged to give

Ms
T ¼Ms

0U
s
0S

TSUsT
0 Ms

0 (7)
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and

Ks
T ¼Ms

0U
s
0SS

T
SKs

TSSSUsT
0SM

s
0 (8)

where Ks
TS is the diagonal matrix of strain eigenvalues for the transformed substructure.

Symmetric matrices U and V may be defined that describe the transformation of the substructure mass and
stiffness matrices, respectively, and are

U ¼ STS and V ¼ ST
SKs

TSS. (9)
2.2. Transforming the substructure stiffness matrix only

Essentially the procedure is equivalent to that described in the previous section, where the mass matrix is set
to the identity. If Ws

0 denotes the eigenvector matrix of the substructure stiffness matrix, and Rs
0 is the

corresponding diagonal matrix of eigenvalues, then

Ks
0 ¼ Ws

0R
s
0W

sT
0 . (10)

The modified eigenvalues are given by RT , and the transformed eigenvectors are related to the baseline
eigenvectors by the matrix R, where

Ws
0 ¼ Ws

TR. (11)

The transformed stiffness matrix is then

Ks
T ¼ Ws

0R
TRs

TRWsT
0 . (12)

However, there is an additional constraint on the transformation matrix. In the method described in Section
2.1 the mass matrix was able to change. Here the normalisation of the eigenvectors requires that

WsT
0 Ws

0 ¼ I and WsT
T Ws

T ¼ I. (13)

Substituting Eq. (11) into Eq. (13) yields,

RTWsT
T Ws

TR ¼ I ) RTR ¼ I. (14)

Thus the transformation R must be an orthogonal matrix. When using the mass normalised decomposition in
Section 2.1 no such restriction on the transformation matrix applies.

Although this section has considered the substructure stiffness matrix in isolation, a similar approach can be
taken to transform the mass matrix.
2.3. Separation of mass and stiffness matrix transformations

Consider the baseline structure mass and stiffness matrices, M0 and K0. The method of Section 2.1
automatically infers changes in both the mass and stiffness matrices. We can obtain changes in the stiffness
matrix only using the method of Section 2.2, but this requires further a constraint on the substructure
eigenvector transformations. Satisfying the constraint of an orthogonal R can be difficult, particularly when
considering complex substructure models.

The question arises whether we can use the transformed stiffness matrix from Section 2.1, and simply ignore
the changes to the mass matrix. Expressed formally, given a substructure eigenvector transformation matrix S

and transformed eigenvalues KT , does there exist a transformation matrix R and transformed eigenvalue
matrix RT such that the stiffness matrices given by Eqs. (8) and (12) are identical. Consideration of the number
of parameters and constraints demonstrates that finding such a solution is, in general, impossible. However,
when a lumped mass matrix is used, the examples show that a suitable R and RT may be found.
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3. Zero stiffness constraints

When considering a substructure, there will be uncoupled and unconnected degree of freedom pairs. For
example suppose a T-shaped substructure is modelled using four nodes, with three nodes at ends of the legs
and the fourth node at the joint. If the legs of the structure are sufficiently thin so that a beam model is
sufficiently accurate, then the degrees of freedom at one of the outside nodes are not connected directly to any
of the degrees of freedom at the other outside nodes. Of course there will be an indirect connection through the
central node. However the unconnected degrees of freedom mean that there will be a zero in the stiffness
matrix at an off-diagonal position corresponding to an unconnected degree of freedom pair. If the analyst is
convinced that these unconnected degrees of freedom should remain unconnected then this zero in the stiffness
matrix should be retained.

Levin et al. [19] showed that early direct methods which altered connectivity properties were not physically
meaningful. In general the generic substructure method does not retain the connectivity of the baseline model.
In the case of uncoupled degrees of freedom, a substructure with additional non-zero elements in KT will
exhibit a new type of behaviour. Such a change in the structure of the model matrices may be beneficial when
the basis of the substructure model is uncertain. However controlling the connectivity of the substructure
degrees of freedom can have significant benefits, and the rest of this paper will consider methods that retain the
connectivity. Only changes to the stiffness matrix are considered further, and hence only strain modes are
required. Thus the subscripts R and S are dropped. A lumped substructure mass matrix is used for the
development.

Each element of the stiffness matrix is made up of a contribution from each mode. Element ði; jÞ of the
baseline substructure stiffness matrix can be expressed as

Ks
0ij ¼Ms

0iiM
s
0jj

Xm

p¼1

Ks
0ppU

s
0ipU

s
0jp, (15)

where Us
0ip is the ith element of mode p of the baseline substructure eigenvector matrix (strain modes only) and

m is the number of strain modes. For each value of the summation index, the contribution of a different mode
is identified. Suppose only the substructure eigenvalues are modified ðS ¼ IÞ. Then,

Ks
Tij ¼Ms

0iiM
s
0jj

Xm

p¼1

Ks
TppU

s
0ipU

s
0jp. (16)

Inspection of Eqs. (15) and (16) shows that a transformation of eigenvalue p will perturb stiffness term K0ij if
degrees of freedom i and j are both active in mode p. An eigenvalue perturbation will therefore change the
connectivity of the baseline model.

If the zeros in the stiffness matrix are to be preserved then

Ks
Tij ¼ 0 when Ks

0ij ¼ 0, (17)

where

Ks
Tij ¼Ms

0iiM
s
0jj

Xm

p¼1

Ks
TppU

s
IipU

s
Ijp (18)

and

Us
I ¼ UsT

0 Ss. (19)

The zero stiffness constraints are identified using Eq. (17). The approach adopted here will be to use the
elements of the transformed eigenvalues Ks

T as the updating parameters, and then optimise the eigenvector
transformation matrix S to retain the connectivity. The optimisation is nonlinear, with the associated
uniqueness and existence questions, and cannot be solved analytically. Rather than find an exact solution, we
minimise the residual in the zero stiffness constraint equations, using an error function of the form

EðSÞ ¼
X
ði;jÞ2Z

kKs
Tijk

2 (20)
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where Z is the set matrix elements corresponding to the zeros in the baseline substructure stiffness matrix. The
changes in the substructure eigenvector matrix should be small and a good initial estimate of S is the identity
matrix.

A constraint equation is defined for each zero that is to be preserved in KT using Eq. (18). The variables in
the optimisation are the elements of S. If r is the number of rigid body modes, and m the number of flexible
modes, then the number of variables (nvar) and the number of constraints (ncon) are

nvar ¼ m2 and nconoðmþ rÞðmþ r� 1Þ=2. (21)

A substructure will be composed of two or more elements. In the case of beam elements with bending and axial
motion in one plane,

mX3r ) nvar4ncon. (22)

The large number of variables in S and the relatively small number of zero constraints means that the solution
will not be unique. One approach is to minimise the change in the substructure eigenvectors, and this is easily
included in the optimisation function, Eq. (20). Hence the function to be optimised becomes,

EðSÞ ¼
X
ði;jÞ2Z

kKs
Tijk

2 þ akS� Ik2 (23)

where a is the regularisation parameter. This approach is similar to Tikhonov regularisation [20], although the
criterion for choosing a is different. Usually a is chosen to balance the residual and the parameter change,
through techniques such as the L-curve [21]. However here the objective is to make the residual small, and the
second term in Eq. (23) is merely to ensure a unique solution to the optimisation problem. Hence a should be
chosen such that the solution is stable and the residual is sufficiently small. This will be demonstrated in the
example.

Suppose eigenvalue p is modified, so that Ks
Tpp ¼ mpK

s
0pp. There will be tendancy for the optimisation to scale

Spp by 1=
ffiffiffiffiffimp
p

to absorb the perturbations in the constraint equations and the trivial solution given by

STKs
TS ¼ Ks

0 (24)

will be obtained. The diagonal element of S corresponding to the eigenvalue that is being modified is therefore
set equal to 1.

A trust region method utilising the Matlab ‘fsolve’ function is used to solve the optimisation problem. The
Jacobian can be derived analytically which greatly increases the efficiency of the optimisation. Element ðg; hÞ
of the Jacobian is the partial derivative of constraint g with respect to variable h. Each constraint is based
upon an element of the stiffness matrix. It is assumed that constraint g corresponds to element ði; jÞ of the
stiffness matrix and that variable h corresponds to element ðq; rÞ of the transformation matrix. A lumped mass
matrix is assumed. Each row of S corresponds to a particular mode, and hence variable h will affect mode q

only. The constraints defined by Eq. (18) can be broken down into a contribution from each mode. The only
term in the summation that is sensitive to variable h is when p ¼ q. Thus,

Jgh ¼
qKs

Tij

qSqr

¼Ms
0iiM

s
0jj

qðKs
0qqU

s
IiqU

s
IjqÞ

qSqr

. (25)

Us
I is expanded to include S explicitly as

Us
Iiq ¼ Us

0i:S
T
q:, (26)

where the notation Ai: and A:i indicates row i and column i of the matrix A, respectively. Therefore,

Jgh ¼Ms
0iiM

s
0jjK

s
0qq

qðUs
0i:S

T
q:U

s
0j:S

T
q:Þ

qSqr
(27)

where

Us
0i:S

T
q: ¼

Xm

p

Us
0ipSqp. (28)
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The only term in the summation that is sensitive to variable h is when p ¼ r. Using the chain rule to
differentiate the product in Eq. (27) yields

Jgh ¼Ms
0iiM

s
0jjK

s
0qqðU

s
0irU

s
0j:S

T
q: þUs

0jrU
s
0i:S

T
q:Þ. (29)

It is worth commenting at this stage on the assumptions made regarding the properties of the substructures
considered. A lumped mass matrix is used because it simplifies Eqs. (15) and (16) resulting in the mass terms
appearing as scalar operators outside of the summation. Alternative mass matrices can be used to derive
equivalent equations. When using generic substructures to model real structural components an accurate
mass model is required, and the lumped mass model is rarely sufficient. As discussed in Section 2.3,
the stiffness matrix will be modified based on the transformation derived using the lumped mass matrix.
However, the global eigenvalues are computed using this modified stiffness matrix with a consistent mass
matrix. This means that the simplicity in the equations can be maintained without compromising the mass
model.
4. Case study

In order to update a model using the method presented, the substructure must first be isolated from the
global structure. The level of perturbation of the substructure eigenvalue is defined by the eigenvalue ratio mp

where,

mp ¼
Ks

Tpp

Ks
0pp

. (30)

The constraint equations are identified and solved numerically for each substructure mode over a range of mp.
This gives the variation of Ks

T with respect to mp, and hence mp will be used as the updating parameter.
The data set containing the variation of Ks

T with respect to mp is saved for each substructure mode so that
at each iteration in the updating scheme the relevant data can be accessed. Linear interpolation is used
between data points, and finite differences are used to calculate sensitivities. Fig. 1 shows a flow chart of the
procedure.

Fig. 2 shows the test structure and corresponding finite element model. The baseline model is constructed
using Euler–Bernoulli beam elements with a consistent mass model. The distinctive fillet radius at the corner
will be treated as the area of uncertainty and will be modelled using two beam elements of length 40mm to
form a corner substructure (using a lumped mass model to calculate the eigenvector transformations). The
substructure modeshapes are shown in Fig. 3. The substructure has an axis of symmetry which is preserved
through the transformations by preventing modes with different symmetry properties from mixing. Fig. 4
identifies the symmetric and anti-symmetric modes of the corner substructure. The representation of the mode
shapes in Fig. 4 shows only the sign of the degree of freedom within each mode. For example if degree of
freedom pair 3–9 is examined it is clear that they are symmetric in modes 1, 3 and 5 and anti-symmetric in
modes 2, 4 and 6. When selecting parameters for the optimisation, only those elements of the eigenvector
transformation matrix that combine modes with the same symmetry properties are required, and these are
identified by a ‘tick’ in the representation of S given.

All six substructure eigenvalues are perturbed over the range 0:5ompo2. The regularisation parameter a is
determined using Figs. 5(a)–(f) which show plots of the residual and the side constraint for p ¼ 1; . . . ; 6 where
mp ¼ 1:5. For ao10�4 the solution is seen to be stable. Figs. 6–8 shows the variation in the elements of the
substructure stiffness matrix over the range of the generic parameters. The perturbation of eigenvalues 1 and 2
have almost identical effects on the stiffness matrix and so only one of these eigenvalues needs to be considered
(eigenvalue 2 is selected). Perturbation of eigenvalues 5 and 6 introduce changes to axial degrees of freedom
only and can therefore be discounted.

The structure was tested under free–free conditions using roving hammer excitation and a fixed
accelerometer. The measured and analytical global natural frequencies are shown in Table 1 and Fig. 9
shows the global modeshapes. The first seven flexible modes will be used; the first five will be updated using the
sensitivity method, and the final two will be used to verify whether the changes made represent an overall
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Fig. 1. Flow chart detailing the updating procedure using constrained generic substructures.
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improvement in the model. A sensitivity study of the global natural frequencies with respect to the potential
updating parameters is shown in Table 2. The parameters are Global Young’s modulus, EG, the substructure
Young’s Modulus, ES, and three substructure eigenvalues.

Four updating schemes will be considered. Each scheme will include two parameters. Global Young’s
modulus, EG, will be used in each case (to incorporate global stiffening) along with one substructure
parameter. This will be substructure Young’s Modulus, ES, or one of the remaining substructure parameters,
m2, m3 and m4. Global natural frequency data is used for the updating, and each natural frequency is weighted
by the corresponding measured natural frequency. In each scheme the sensitivity matrix is well conditioned,
the updating equation is over-determined and regularisation is not required. The Young’s modulus terms were
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Fig. 3. Corner substructure strain modeshapes.
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Fig. 4. The symmetry properties of the corner substructure.
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updated as a ratio of the initial value. No limits were placed on the maximum change to these parameters. The
generic substructure parameters were bounded within the range of the transformation applied; 0:5ompo2.
Tables 3 and 4 show the results of the updating schemes and Fig. 10 shows the parameter convergence.
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Table 3 shows that all schemes improved the overall natural frequency correlation significantly, including
those frequencies that were omitted during updating. The global Young’s modulus changed very little in all
schemes which indicates that the initial value was accurate and that the error in the baseline model was
concentrated in the selected substructure. Table 4 shows the average magnitude of the error for the five updated
modes, and for all seven modes. Young’s modulus gives the (marginally) best correlation when only the updated
modes are considered. When the two higher modes are included m3 and m4 give the best overall correlation.
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Fig. 8. Stiffness changes obtained by transforming corner substructure eigenvalues 5 and 6: (a) eigenvalues 5, (b) eigenvalue 6. dofs:

1-1, 1-4, 5-8, 8-8, dofs: 4-4, 5-5.
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Mode 1: 28.4 Hz Mode 2: 106.3 Hz Mode 3: 160.9 Hz Mode 4: 331.7 Hz

Mode 5: 432.8 Hz Mode 6: 686.5 Hz Mode 7: 838.8 Hz

Fig. 9. Global modeshapes and natural frequencies for the structure.

Table 2

The sensitivity of the global modes to the updating parameters

Global mode EG ES m2 m3 m4

1 13.7 4.1 4.1 1.5 0.1

2 53.0 0.5 0.4 1.4 �0.5

3 77.1 17.9 17.5 �6.8 7.6

4 165.1 4.3 3.3 13.5 �4.7

5 206.6 35.5 32.5 �45.1 33.9

Table 1

The global natural frequencies of the example structure

Global mode Test frequency Model frequency Error

(Hz) (Hz) (%)

1 28.4 27.5 �3.2

2 106.3 106.4 0.1

3 160.9 154.6 �3.9

4 331.7 331.1 �0.2

5 432.8 414.2 �4.3

6 686.5 684.0 �0.4

7 838.8 802.0 �4.4

Table 3

The natural frequencies of the finite element model, before and after updating

Mode Baseline model ES m2 m3 m4
(Hz) (Hz) (Hz) (Hz) (Hz)

1 27.5 28.8 28.8 27.9 27.9

2 106.4 106.5 106.6 107.6 107.4

3 154.6 160.5 160.4 160.4 160.4

4 331.1 332.4 332.5 332.2 332.4

5 414.2 426.5 425.9 435.3 435.5

6 684.0 689.0 688.7 679.0 681.2

7 802.0 820.1 817.0 846.4 850.0
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Table 4

Errors in the natural frequencies in the finite element model, before and after updating

Mode Baseline model ES m2 m3 m4
(%) (%) (%) (%) (%)

1 �3.2 +1.3 +1.3 �1.7 �1.6

2 +0.1 +0.2 +0.3 +1.2 +1.1

3 �3.9 �0.3 �0.3 �0.3 �0.3

4 �0.2 +0.2 +0.2 +0.1 +0.2

5 �4.3 �1.4 �1.6 +0.6 +0.6

6 �0.4 +0.4 +0.3 �1.1 �0.8

7 �4.4 �2.2 �2.6 +0.9 +1.3

Average 1–5 2.3 0.7 0.7 0.8 0.8

Average 1–7 2.3 0.9 1.0 0.8 0.8
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Fig. 10. Convergence of the parameter values during updating. Substructure parameters: (a) ES , (b) mC2, (c) mC3 and (d) mC4. EG,

substructure parameter.
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Tables 2 and 3 show that the parameters ES and m2 have a very similar effect on the global modes. The best
solution will have a high level of correlation but will also introduce minimal changes to the stiffness matrix.
The final parameter value in each case is roughly 1.5. When considering Esub this will infer a +50% change to
every element of the substructure stiffness matrix. When considering the generic parameter the changes
are far more specific. For example when m2 ¼ 1:5 the changes in typical elements of the substructure stiffness
matrix are:

dof 3� 6 ) �25%,

dof 6� 6 ) þ10%,

dof 6� 9 ) �25%.
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The changes made using the generic parameter are targeted toward the influential degrees of freedom and
represent a far more elegant correction of the baseline matrix than that obtained using substructure Young’s
modulus.
5. Equivalent generic element transformations

There are two types of constraints placed on the transformations: those between unconnected degree of
freedom pairs and those between uncoupled degree of freedom pairs. Preservation of the zeros between
unconnected degree of freedom pairs ensures that the constrained substructure transformation can be
described by an equivalent set of transformations, applied to each of the elements that make up the
substructure. Preservation of the zeros between the uncoupled degree of freedom pairs effectively infers
constraints on the form of S in the equivalent element transformations. In the case considered here the
symmetry of the substructure was preserved so the two elements from which it is composed are identical and a
single element transformation will describe the substructure transformation. Coupling constraints were
preserved, hence the matrix V from Eq. (9) has the form

V ¼

v1;1 v2;1 0

v2;1 v2;2 0

0 0 v3;3

2
64

3
75. (31)

A constrained substructure transformation is described by a single parameter, m, but will infer changes on all
active elements of V, for each element in the substructure. The constrained transformation therefore defines
relationships between the parameters that make up the equivalent element transformations. These
relationships will be determined by the constraints, the selection of the parameters within the optimisation
(a symmetrical parameter set was used here), the eigenvalue selected for perturbation and the level to which it
is perturbed. The substructure presented here was composed of two identical beam elements so there are four
element parameters which are condensed into a single substructure parameter for each mode examined. The
benefit in terms of the parameter set reduction in this case is not significant, but it will become so as the
substructure size increases. An in-plane T-joint model composed of 4 beam elements, with an axis of symmetry
as shown in Fig. 11 will be described by 12 independent element transformation parameters, which can be
reduced to a single parameter. Even when applied to very large substructures the parameter set will remain
small, whilst enabling significant and controllable changes to be made to the model matrices.
Fig. 11. Proposed T-joint substructure model.
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6. Conclusions

A substructure parameterisation technique has been presented which allows changes to be made to the
structure of the model matrices whilst preserving the connectivity of the baseline model. The technique
requires the numerical solution of an optimisation problem and therefore introduces an extra stage in the
updating scheme which increases computational expense. A simple structure was updated to demonstrate the
method. This example did not contain significant structural errors and so benefits in terms of the natural
frequency correlation over a design variable parameterisation were not apparent. However, it was shown that
the updated model using constrained generic substructure parameters represented a more elegant solution.
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